129 research outputs found

    Identification of 13 DB + dM and 2 DC + dM binaries from the Sloan Digital Sky Survey

    Full text link
    We present the identification of 13 DB + dM binaries and 2 DC + dM binaries from the Sloan Digital Sky Survey (SDSS). Before the SDSS only 2 DB + dM binaries and 1 DC + dM binary were known. At least three, possibly 8, of the new DB + dM binaries seem to have white dwarf temperatures well above 30000 K which would place them in the so called DB-gap. Finding these DB white dwarfs in binaries may suggest that they have formed through a different evolutionary channel than the ones in which DA white dwarfs transform into DB white dwarfs due to convection in the upper layers.Comment: 4 pages, 2 figures, accepted for publication in A&A Letter

    A Comprehensive Spectroscopic Analysis of DB White Dwarfs

    Full text link
    We present a detailed analysis of 108 helium-line (DB) white dwarfs based on model atmosphere fits to high signal-to-noise optical spectroscopy. We derive a mean mass of 0.67 Mo for our sample, with a dispersion of only 0.09 Mo. White dwarfs also showing hydrogen lines, the DBA stars, comprise 44% of our sample, and their mass distribution appears similar to that of DB stars. As in our previous investigation, we find no evidence for the existence of low-mass (M < 0.5 Mo) DB white dwarfs. We derive a luminosity function based on a subset of DB white dwarfs identified in the Palomar-Green survey. We show that 20% of all white dwarfs in the temperature range of interest are DB stars, although the fraction drops to half this value above Teff ~ 20,000 K. We also show that the persistence of DB stars with no hydrogen features at low temperatures is difficult to reconcile with a scenario involving accretion from the interstellar medium, often invoked to account for the observed hydrogen abundances in DBA stars. We present evidence for the existence of two different evolutionary channels that produce DB white dwarfs: the standard model where DA stars are transformed into DB stars through the convective dilution of a thin hydrogen layer, and a second channel where DB stars retain a helium-atmosphere throughout their evolution. We finally demonstrate that the instability strip of pulsating V777 Her white dwarfs contains no nonvariables, if the hydrogen content of these stars is properly accounted for.Comment: 74 pages including 30 figures, accepted for publication in the Astrophysical Journa

    Rocky Planetesimals as the Origin of Metals in DZ Stars

    Full text link
    {Abridged}. An analysis of the calcium and hydrogen abundances, Galactic positions and kinematics of 146 DZ stars from the Sloan Digital Sky Survey demonstrates that interaction with the interstellar medium cannot account for their externally polluted atmospheres. The calcium-to-hydrogen ratios for the 37 DZA stars are dominated by super-solar values, as are the lower limits for the remaining 109 DZ stars. All together their metal-contaminated convective envelopes contain 10^{20+-2} g of calcium, commensurate with the masses of calcium inferred for large asteroids. It is probable that these stars are contaminated by circumstellar matter; the rocky remains of terrestrial planetary systems. In this picture, two predictions emerge: 1) at least 3.5% of all main sequence A- and F-type stars build terrestrial planets; and 2) the DZA stars are externally polluted by both metals and hydrogen, and hence constrain the frequency and mass of water-rich, extrasolar planetesimals.Comment: Accepted to MNRA

    Mechanisms of Degradation and Identification of Connectivity and Erosion Hotspots

    Get PDF
    The context of processes and characteristics of soil erosion and land degradation in Mediterranean lands is outlined. The concept of connectivity is explained. The remainder of the chapter demonstrates development of methods of mapping, analysis and modelling of connectivity to produce a spatial framework for development of strategies of use of vegetation to reduce soil erosion and land degradation. The approach is applied in a range of typical land use types and at a hierarchy of scale from land unit to catchment. Patterns of connectivity and factors influencing the location and intensity of processes are identified, including the influence of topography, structures such as agricultural terraces and check dams, and past land uses. Functioning of connectivity pathways in various rainstorms is assessed. Modes of terrace construction and extent of maintenance, as well as presence of tracks and steep gradients are found to be of importance. A method of connectivity modelling that incorporates effects of structure and vegetation was developed and has been widely applied subsequently

    DE Canum Venaticorum : a bright, eclipsing red dwarf–white dwarf binary

    Get PDF
    Context. Close white dwarf–red dwarf binaries must have gone through a common-envelope phase during their evolution. DE CVn is a detached white dwarf–red dwarf binary with a relatively short (∼8.7 h) orbital period. Its brightness and the presence of eclipses makes this system ideal for a more detailed study. Aims. From a study of photometric and spectroscopic observations of DE CVn we derive the system parameters that we discuss in the framework of common-envelope evolution. Methods. Photometric observations of the eclipses are used to determine an accurate ephemeris. From a model fit to an average lowresolution spectrum of DE CVn, we constrain the temperature of the white dwarf and the spectral type of the red dwarf. The eclipse light curve is analysed and combined with the radial velocity curve of the red dwarf determined from time-resolved spectroscopy to derive constraints on the inclination and the masses of the components in the system. Results. The derived ephemeris is HJDmin = 2 452 784.5533(1) + 0.3641394(2) × E. The red dwarf in DE CVn has a spectral type of M3V and the white dwarf has an effective temperature of 8 000 K. The inclination of the system is 86+3◦ −2 and the mass and radius of the red dwarf are 0.41 ± 0.06 M and 0.37+0.06 −0.007 R, respectively, and the mass and radius of the white dwarf are 0.51+0.06 −0.02 M and 0.0136+0.0008 −0.0002 R, respectively. Conclusions. We found that the white dwarf has a hydrogen-rich atmosphere (DA-type). Given that DE CVn has experienced a common-envelope phase, we can reconstruct its evolution and we find that the progenitor of the white dwarf was a relatively lowmass star (M ≤ 1.6 M). The current age of this system is 3.3−7.3 × 109 years, while it will take longer than the Hubble time for DE CVn to evolve into a semi-detached system
    • …
    corecore